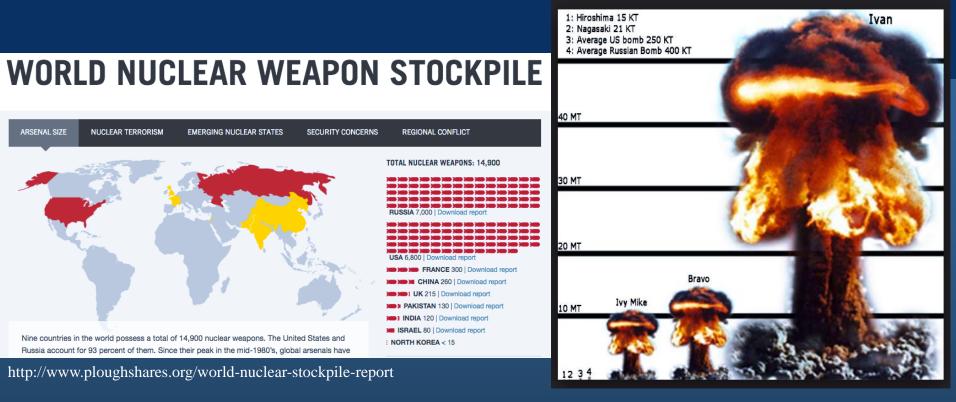


The Nevada Terawatt Facility: Training Students in the Field of High-Energy-Density Plasma Science

Aaron M. Covington UNR Physics Department NTF Director

National Security Forum July 18th, 2017

- 1. Collaborators and clients
- 2. Motivations- Why pursue HED Plasma Science?
- 3. Census of UNR students & professors
- 4. What is High-Energy-Density (HED) Plasma Science?
- 5. Where are our students now?


1. NTF Collaborations & Synergistic Activities

Ongoing

- Sandia Z-pinch Physics, Zeeman Spectroscopy & Flyer Design
- UCSD Proton Deflectometry of Z-pinched Plasmas (NSF), Xray Thompson Scattering, Colliding Jets
- NSTec Neutron sources, detection and modeling (MCNP), laser
 & spectroscopic diagnostic development, advanced targets
- LLNL & ASU Novel X-pinch plasma Driven Shocks
- MIFTI/UCSD Staged Z-pinch Fusion (ARPA-e)
- U Toledo- Lab Astrophysics (NSF-REU)
- LANL Opacities, Plasma Polarization Spectroscopy, Molecules in Plasmas, etc.
- Voss Scientific- LSP modeling
- Digital Solid State Propulsions- pulsed power design

Planned/ in development • Horiba, L3, Raytheon, Riverside, etc.

2. Motivations. Nuclear weapons are still with us...

2. Motivations. Stewardship of the U.S. Nuclear Weapons Stockpile. Making NTF the Test Site for the Test Site...

- National Nuclear Security Administration (NNSA) is a semi-autonomous agency within DOE that oversees the nuclear weapons complex (FY2017 budget \$12.9B- the majority of the DoE budget)
- The NNSA mission in a nutshell: Maintaining a safe, secure and effective nuclear deterrent.
- The NNSA Stockpile Stewardship program was designed to to ensure reliability and maintenance of US nuclear weapons w/o nuclear testing (tests stopped in 1992)- "Where's the Kaboom!" We don't know if the weapons will work...
- Stewardship is achieved through science, engineering, simulation and subcritical experimentation (SCE)
- SCE is carried out at the Nevada National Security Site (NNSS)
- The NNSA workforce is graying! A recent wave of retirements is jeopardizing institutional memory. NNSA has created the Stockpile Stewardship Academic Program to address this shortage in expertise.

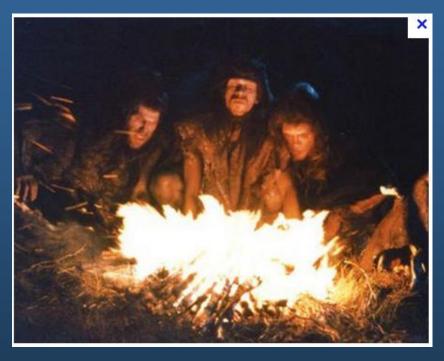
Graduate Students

Angermeier, Alex Bilkhu, Nuvi Daykin, Tyler Dutra, Eric Haque, Showera Hutchinson, Trevor Iratcabal, Jeremy Johnson, Zach Mayes, Dan Petkov, Emil Shultz, Kimberly Stafford, Austin Swanson, Kyle Wallace, Matt

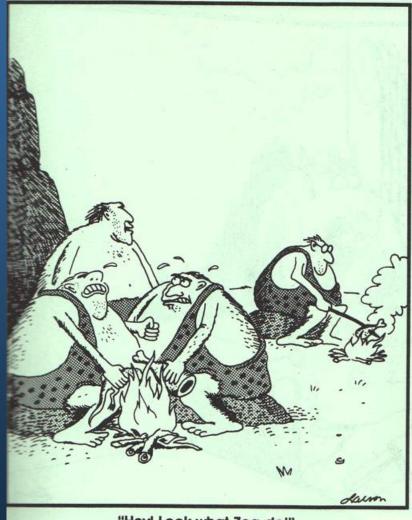
3. A Census of UNR HED Physics Student Researchers/Advisors

<u>Advisors</u>

Covington Covington Sawada Covington Neill Bauer Covington Covington Mancini Safronova Kantsyrev Safronova Ivanov Neill

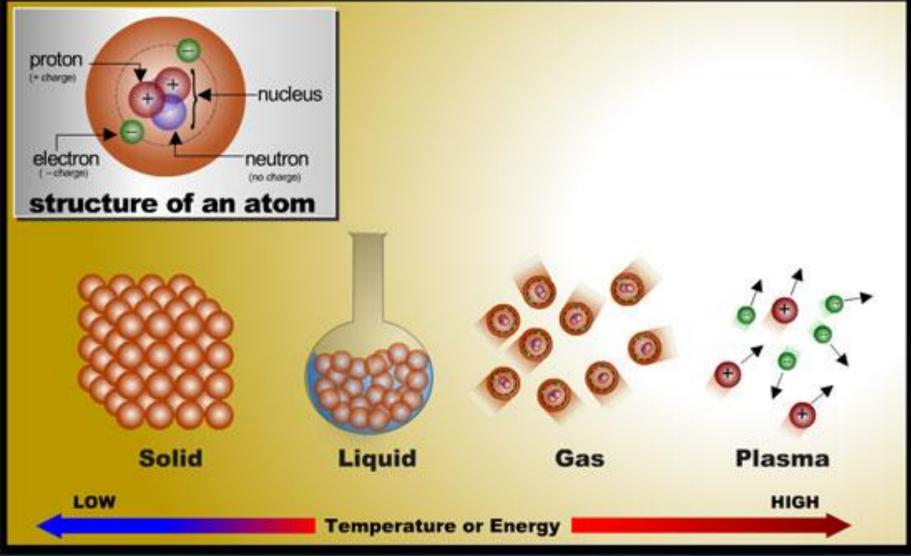


Undergraduate Students

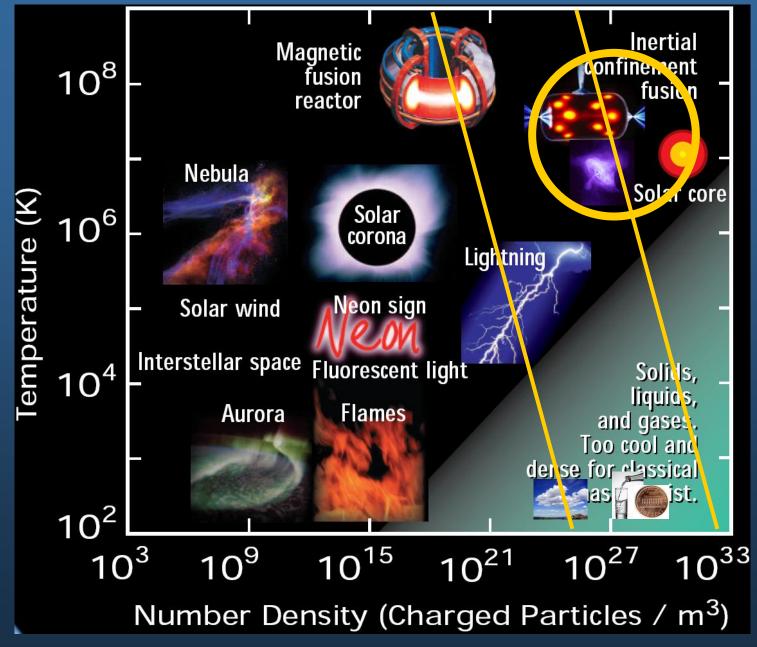

Beatty, Cuyler Lopes, Ethan Covington Covington

4. What is HED Plasma Science? Human beings have been studying plasma for quite awhile....

Early Plasma Physics Research Team



"Hey! Look what Zog do!"


Q: What is plasma? A: The 4th phase of matter.

PHASES OF MATTER

Courtesy: NASA AMES

High Energy Density Plasmas that can be studied at NTF

Contemporary Physics Education Project (2006)

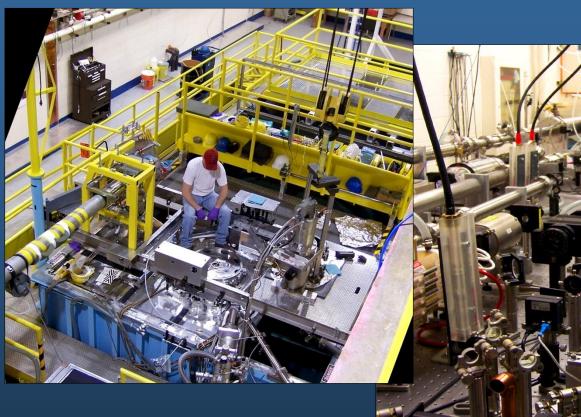
Take away concepts...

Q1. How do we make high-energy density plasmas?

A1. We store electrical energy in capacitors and

i) Quickly dump the electrical energy into a material target, or

ii) Convert the stored electrical energy to light (photons) in a lasing medium and then tightly focus the light on a target. This happens very quickly...

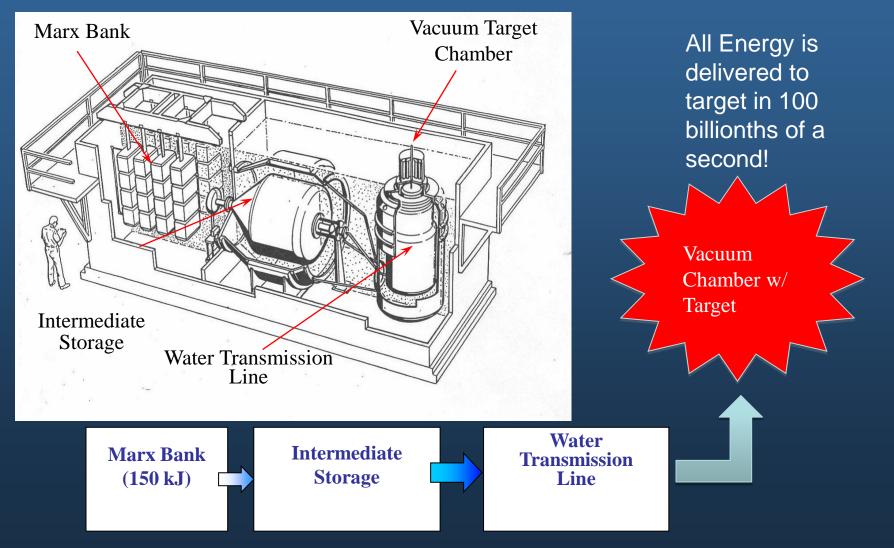

Q2. What is unique about NTF Plasmas and why are we so excited about exploring this regime?

A2. These are extreme plasmas that have both high temperatures, densities and field strengths like those found in nuclear explosions. HED plasmas also exhibit unanticipated behavior.

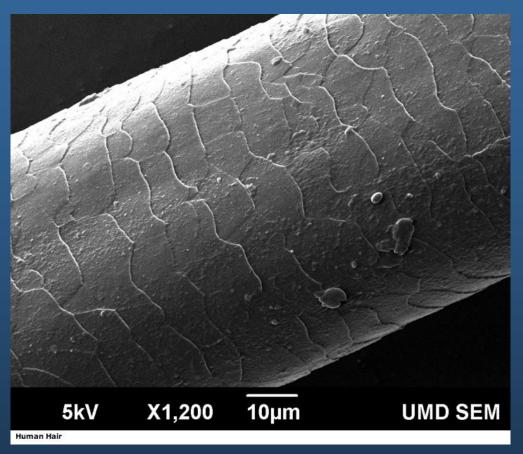
This is an area ripe for discovery! Neutron science, Isotope Production, Advanced Energy Concepts, Particle Beam Accelerators, Astrophysics etc.

Major HED Plasma Research Machines

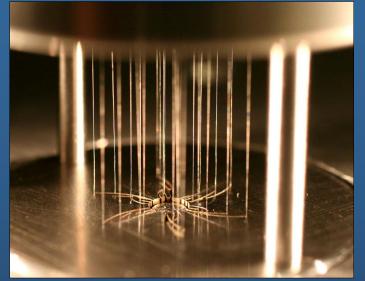
Zebra Z-pinch, 1MA @ 2MV

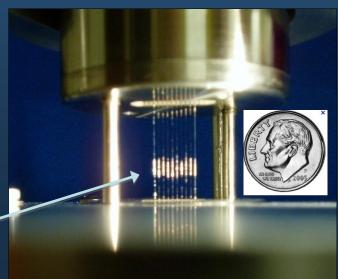

Leopard Laser 100J, 1 ns or 15 J, 350fs

Cheetah Laser 1.5J, 25 fs, 5 hz



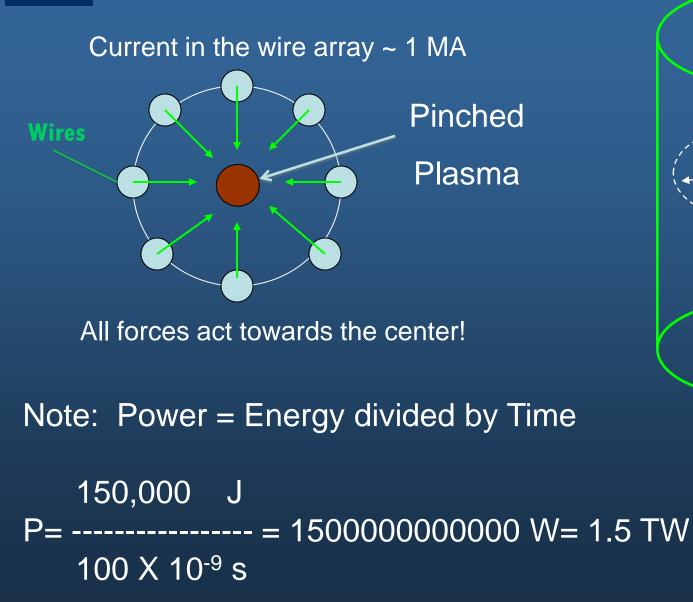
NTF "Fusion" Generators

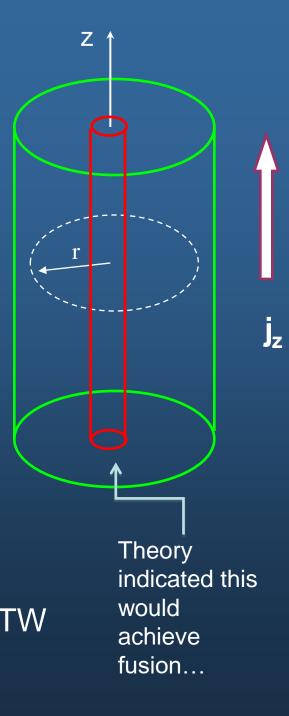

NTF Zebra Z-pinch Accelerator- a short course... Note: This was intended to achieve breakeven at LANL in the 1980s...



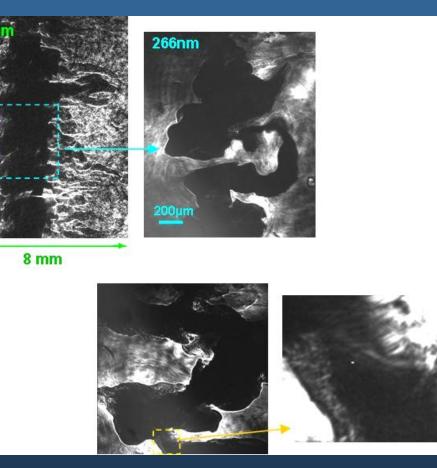
Nested quadruple array

V. Kantsyrev


Planar wire array

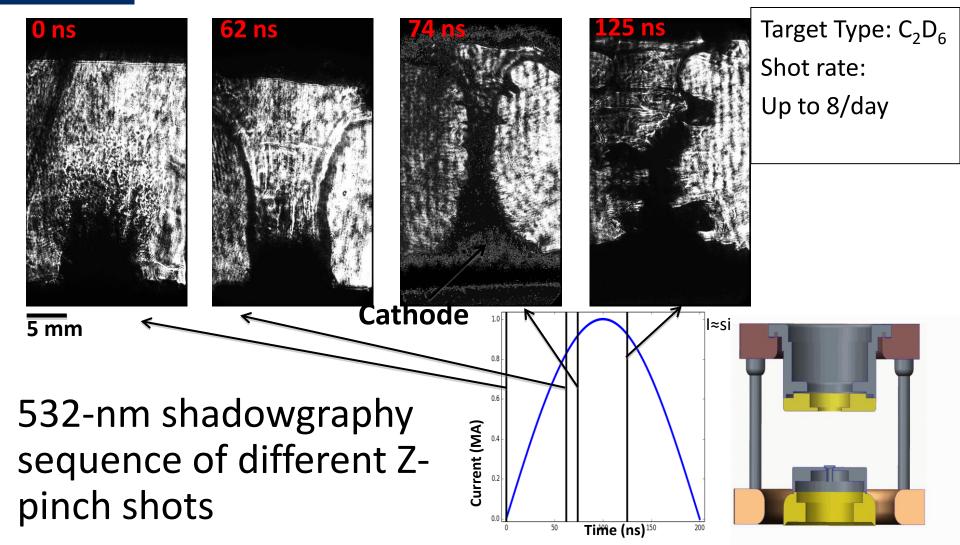


Micrograph of a strand of hair (diameter ~100 microns)


Typical wire diameter -(10 microns)

Experimental Images of the plasma column... Instabilities form and the plasma cools far to quickly!

Lower absorption of UV reveals details in denser plasma*


"You can't fool Mother Nature!"

Unintended benefit: Z-pinches are the brightest laboratory sources of X-rays (~ 20% of stored energy converted).

*: Ivanov et al., IEEE TPS. 38, 574 (2010)

Unique NTF Developments: Z-pinch Stages of Laser Plume Anode

5. Where are our students now? NTF Defense Science Training

32 PhDs in HEDP Physics- only 4 found positions in Nevada!

Of these- 13* earned B.S. degrees from UNR & 11 attended local area high schools

12 DOE/DOD Lab Post Docs11 University PostDoc/Research9- Academy/Industry

2 Defense Industry R&D 6 NNSA Technical Staff Members

3 DoD Technical Staff Members Recent UNR Physics PhD Recipients High Energy Density Plasma Physics (12/09-present)

20

pres

09	Former Student	Where are they now?	PhD Advisor
	Rohini Mishra	Post doc @ UCSD; Stanford	Sentoku
	Sandrine Gaillard	Post doc @ FRZ	Sentoku
	Tom Awe	Post doc & TSM @ LANL	Siemon/Bauer
Timo	Abdel Haboub	Post doc @ LBNL	lvanov
	Milena Angelova	Instructor	Bauer
	Ishor Shrestha	Post doc @ UNR	Kantsyrev
	Essam Yasin	Post doc @ U Alaska	Sotnikov
	Nick Ouart*	NRC post doc & TSM @ NRL	Safronova
	Taisuke Nagayama*	Post doc & TSM @ SNL	Mancini
	Chris Plechaty*	LLNL Post doc; TSM @ WPAFB	Presura
	Mike Bakeman	Industry KLA-Tencor	Sentoku
	Ken Williamson*	Post Doc UTSA; TSM @ SNL	Kantsyrev
	David Martinez*	Post doc & TSM LLNL	Presura
	Penka Wilcox	Instructor- TMCC	Safronova
	Peter Hakel*	Post doc & TSM @ LANL	Mancini
	Trevor Burris-Mogg*	Post doc @ LANL	Sentoku
	Sandra Stein	Industry Raytheon	Presura
	Glenn Osborne*	Physicist, China Lake NWC, CA	Kantsyrev
	Daniel Papp	Jr. Scientist, ELI-ALPS, Hungary	Ivanov
	Yadab Paudel	Asst. Professor, Union College	Sentoku
	Heather Johns*	Post doc & TSM @ LANL	Mancini
	Philippe LeBlanc*	DRI	Sentoku
	Michael Weller	Post doc @ LLNL	Safronova
	Tunay Durmaz	Post doc @ UT Houston	Mancini
	KC Chartkunchand*	Post doc @ Stockholm Univ.	Covington
	Austin Anderson	Post doc @ UNR/NSTec	Ivanov
	Tirtha Joshi	Post Doc @ LANL	Mancini
	Rishi Pandit	Post Doc @ S. Illinois U.	Sentoku
	Kevin Yates	Post Doc @ LANL	Bauer
	Erik McKee*	Post Doc @ Helion Energy	Darling
sent	Ben Hammel	Post Doc @ WSU Shock Physics	Darling
	Ryan Royle*	Post Doc @ UNR	Sentoku
	*B.S. in Physics at UNR		

Nevada Terawatt Facility

NTF Student Training Opportunities

There are advantages to using small-medium scale facilities.

- Students can get their hands dirty.
- Experiments can evolve in real time based on data.
- Diagnostic development is easier with high rep rates.
- Many paths can be explored in a cost effective manner.
- Risk aversion can be minimized.

Future Experimentalists playing w/ LEGO

Future Theorists playing MineCraft

Thank you for your attention.